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LETTER 
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The Einstein oscillator model of the Wigner electron crystal takes a specified force constant, which is an 
explicit function of the electronic separation r , .  Here a method is devised for its self-consistent calculation. 
For the gaussian density of the Wigner oscillator. with width j. in terms of rr. experimental data on the 
melting temperature T, versus Landau filling factor v is employed to plot the critical overlap parameter. 
i, say. versus T,. This shows that i, increases as T,, decreases, which is in contrast to Lindemann's Law. 

K E Y  WORDS: Landau filling factor, two-dimensional electron crystal, melting 

A body of work now exists on the melting of the Wigner electron crystal in zero 
magnetic field 1-4. Unfortunately, no experiment is presently known in which the 
quanta1 regime of the melting curve can be explored in the laboratory. Therefore, 
attention has been focussing on magnetic field assisted Wigner crystallization5; the 
motivation being the recent experimental work of Andrei et ul.' and Glattli et al.'. 
This was carried out on a GaAs-GaAIAs heterojunction in a magnetic field; the 
appearance of a new low frequency propagating mode is taken as a fingerprint of 
an electron solid. The conductivity in this new phase has the hallmarks of pinned 
Wigner crystallites: Bragg reflection studies have not proved feasible to date, but will 
eventually be required to confirm long-range order. 

Because of the above motivation, we have been studying models of the melting 
curves of Wigner crystals in magnetic fields in 2 and 3  dimension^^^^. The present 
work focusses on the two-dimensional case. The new aspect of the investigation is 
to refine the harmonic oscillator model" and in particular to devise a method to 
make it self consistent, in a sense to be set out below. This treatment is then applied 
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to an analysis of the results of Glattli rt ul.', whose experiment gives data on the 
melting temperature T, of the two-dimensional electron solid as a function of the 
Landau filling factor 1' = nh!eB. with B the magnetic field strength and n the density 
of electrons per unit area. 

Turning immediately to the self-consistent approach to the Einstein model, we 
note first that such self-consistencj is lacking in the normal procedure. This is because 
the spring constant mR2 in the harmonic potential frnR2r2 is usually written, with 
units of length the appropriate Bohr radius ub = h2~~,/Tce2in (see below for numerical 
values) : 

where y has previously been taken as a constant which characterizes a given model. 
In fact Eq. (1) is valid only in the extreme low density limit, rs tends to infinity. In 
general the scaling of Eq. (1) with I', is correct but LJ is a somewhat complicated 
function of r s  and 7; in addition to the magnetic field B if this is used, as here, to 
assist the Wigner transition. 

Below, the question is raised, and answered in the affirmative, as to whether one 
can proceed self-consistently to a calculation of the oscillator force constant in such 
an Einstein description of the Wigner crystal. As already mentioned, the results are 
then combined with experimental data' on the melting temperature T, vs. Landau 
filling factor 11 to plot the overlap parameter i, (cf Eq. (13) below) corresponding to 
the melting transition, versus T,. 

The complete Hamiltonian for the single oscillator in 2 dimensions is 

Here the vector potential A is taken in terms of the magnitude of the field B in the 
2 direction as A = ( -  Bj,/2, B s / 2 ,  B s ,  0) and we define (0 = eB/2m. Below we shall 
regard R2 as a mean-field parameter which depends on the behaviour of the 
oscillators surrounding the one under discussion. Knowledge of R2 allows the true 
potential felt by each oscillator to be evaluated in the harmonic approximation. The 
theory of March and Tosi' ' can be used in order to get the density matrix from the 
Hamiltonian (2). The electron density can then be evaluated, and in atomic units this 
can be written as 

where 

sin h( /hG) 
cosh(p6) - cosh(,!b)' 

0 2  = (3  - (4) 

Here (5 = [To? + R2]' while p =: ( k B T ) - ' .  Assuming a given geometrical structure 
for the crystal, and summing up over all the oscillator sites i # j we find the density 
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ELECTRON CRYSTAL IN MAGNETIC FIELD 

surrounding the site j as 

pj(r ,  P)  = 1 ~ ( r  - Ri, P )  
i # j  

where Ri denote the lattice vectors. 
The Coulomb repulsion energy for an electron on s i te j  is then 

From the rotational invariance symmetry of the crystal and in particular if the crystal 
is invariant under rotations through an angle 0 # 0, TC, then in general 

($)o = O (7) 

(z)o = (3) = i(v24j)o 
0 

Then the harmonic expansion of Eq. (6) reads 

#j(r) 2 &j(O) + i P 2 4 M x 2  + Y’). (8) 
This is the point now at which the model can be made self-consistent by imposing 

Since for a uniformly charged 2-D layer ( V 2 4 )  = 0, we can invoke the superposition 
principle and we can add any constant uniform charge density to p :  

1 
Q 2  = dr‘-  C { ~ ( r  - Ri, P) - PO: (10) 

where po is an arbitrary constant. In particular, the choice po = p( -Ri ,  /?) 
removes divergence difficulties from the integration. Eq. (10) then becomes, after using 
Eqs. (3) and (4): 

s I r - r l  l 3  i + j  

where the function F ( x )  is defined as 

F(x)  = exp( - x2) 1: f Cexp( - r2)l0(2rx) - 13. (12)  

Here Io (y )  = J,(iy) is the Bessel function of imaginary argument. 
Equations (1 1) and (4) provide a self-consistent way of calculating the spring 
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constant R' and the density p ( r ,  p)  for the single oscillator. From Eq. (4) it is to be 
noted that the mean square displacement (I. ')  = cr2, and it is convenient to introduce 
the overlap parameter 

/. = o'r5.  (13) 
In Eq. ( l l ) ,  the quantity 1, F(lRtlrs/';.) is a function of i. only if the geometry of the 
crystal is fixed. If we define 

g ( i )  == i - F( i) IRilrs 

then it follows that 

which is to be compared with Eq. (1 ). Evidently for a different set of variables rs ,  7: B 
we find a different self-consistent solution and a different value of i. The function 
(I(; . )  is plotted in Figure 1 for the hexagonal structure, the functional dependence on 
i subsuming the above variables. The calculations have also been carried out for the 
square lattice, and i t  is found that the curve in Figure 1 is relatively insensitive to 
structure. However the square lattice results are not plotted as this structure is known 
to be unstable to shear deformations in the classical Iimit'l. The overlap parameter 
increases with increase of density and temperature, and Figure 2 shows plots of 
constant ;. in the density-temperature plane at B = 0. In the classical limit r., tends 
to infinity 

I I I  

g ( A )  ' 

1.0 - 

0 I 1 I 

0 0.5 1.0 1.5 2.0 
A 

Figure 1 Spring constant characterized by g1j.l in Eq. ( I  l as a function of the overlap parameter i.. Note 
that i tends to zero is the classical limit corresponding to y(0) = 0.81 for the hexagonal lattice. The 
corresponding qquare lattice value differs by only about 1%. The largc ;. limit corresponds to the regime 
where tunnelling I S  important. 
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I 

I 

Figure 2 
(Actual plot Is Tvs .  i'.,:' where i', is related to the density n by Eq. ( I ) ) .  

Shows curves of constant i. in the density-temperature plane for the case of zero magnetic field. 

while in the limit T tends to zero the result is 

In the case of zero field in fact one can write the implicit equation 

This is now the point to turn to the main focus of the paper; the influence of the 
Landau filling factor in relation to melting in high magnetic fields. There are various 
possible approaches; the one we have settled on after investigation is to utilize the 
experimental results of Glattli et nL7 for the measured melting temperature T, of the 
two-dimensional electron solid versus v.  Their melting temperature is normalized to 
the classical melting temperature T,, given by 

Tnc = e2/&r,kBrm (19) 

where rm = 127 f 3 has been found e~perimentally '~ for electrons on the surface 
of liquid helium. For GaAs/GaAlAs E = 13 and m = 0.067me where me is the free 
electron mass. The electron separation Y, is normalized to the Bohr radius ab = 
h2EE,/xe2m = 1.03 x m in this material. For a density of 10"cm-2 this gives 
r, = 1.74. Using the result of the present model for /1 as a function of v, VT,, and r, ,  
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Figure 3 Shows critical overlap parameter ,;.< versus reduced temperature VT,, as extracted from Tversus 
Landau filling factor I’ according to Glattli cr a/- .  Different densities are recorded on the inset. The dashed 
line corresponds to the classical limiting value of 0.14 shown at TT,, = 1. 

the critical value i, at melting can be derived from the phase diagram as determined 
by the experimental data. The classical limit, 1’ = 0, corresponds to AC = 0.14; a rather 
low value. The definition of i. used here avoids the logarithmic singularity in the 
vibrational amplitude of two-dimensional crystals. Other values of ,ic derived from 
the work of Bedanov et ~ ( 1 . ’ ~  and Gann et al.” are 0.22 and 0.30 respectively, though 
the latter value may be enhanced by the logarithmic effects in their computer 
simulation. The melting here is thought to be a Kosterlitz-Thouless16 transition, 
driven by the shear modulus and the thermal unbinding of dislocation pairs. The T, 
tends to zero limit in a field occurs for = 0.192 which corresponds to I,. = 0.43. 
Evidently the critical i. is different for the melting of a two-dimensional classical 
crystal and its quanta1 counterpart where zero-point motion dominates. A similar 
conclusion was also reached by Lozovik et (71.”.  I t  is certainly worthy of note that 
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Ceperley's result" rw = 33 for the melting of a two-dimensional quantal crystal in 
zero field also gives 2, = 0.44 from Eq. (17). Figure 3 also shows the AC values obtained 
from the entire set of data of Glattli et d7. It can be seen that 2, drops from the 
quantal value of 0.44 to the classical estimate of 0.14 as the magnetic field is increased. 
Hence Lindemann's Law must be transcended for two-dimensional melting in a 
magnetic field. It is probable that anharmonicity, not included here, plays an 
important role. 
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